首页> 外文OA文献 >Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions
【2h】

Role of crystal structure on CO2 capture by limestone derived CaO subjected to carbonation/recarbonation/calcination cycles at Ca-looping conditions

机译:钙结构在碳酸化/再碳酸化/煅烧循环下石灰石衍生的CaO的晶体结构对CO2捕获的作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Large scale pilot plants are currently demonstrating the feasibility of the Calcium-looping (CaL) technology built on the multicyclic calcination/carbonation of natural limestone for post-combustion and pre-combustion CO2 capture. Yet, limestone derived CaO exhibits a drop of conversion when subjected to multiple carbonation/calcination cycles, which lessens the efficiency of the technology. In this paper we analyze a novel CaL concept recently proposed to mitigate this drawback based on the introduction of an intermediate stage wherein carbonation is intensified at high temperature and high CO2 partial pressure. It is shown that carbonation in this stage is mainly driven by solid-state diffusion, which is determined by the solid’s crystal structure. Accordingly, a reduction of crystallinity by ball milling, which favors diffusion, serves to promote recarbonation. Conversely, thermal annealing, which enhances crystallinity, hinders recarbonation. An initial fast phase has been identified in the recarbonation stage along which the rate of carbonation is also a function of the crystal structure indicating a relevant role of surface diffusion. This is consistent with a recently proposed mechanism for nucleation of CaCO3 on the CaO surface in islands with a critical size determined by surface diffusion. A further issue analyzed has been the effects of pretreatment and cycling on the mechanical strength of the material, whose fragility hampers the CaL process efficiency. Particle size distribution of samples dispersed in a liquid and subjected to high energy ultrasonic irradiation indicate that milling promotes friability whereas thermal annealing enhances the resistance of the particles to fragmentation even though pretreatment effects become blurred after cycling. Our study demonstrates that recarbonation conditions and crystal-structure controlled diffusion are important parameters to be considered in order to assess the efficiency of CO2 capture in the novel CaL concept
机译:大型中试工厂目前正在展示基于天然石灰石的多循环煅烧/碳酸化而建立的钙循环(CaL)技术的可行性,以用于燃烧后和燃烧前的二氧化碳捕获。然而,石灰石衍生的CaO在经历多个碳酸化/煅烧循环时会表现出转化率下降的趋势,从而降低了该技术的效率。在本文中,我们基于引入中间阶段(其中在高温和高CO2分压下会增强碳化)的基础上,分析了最近提出的缓解此缺陷的新型CaL概念。结果表明,该阶段的碳酸化主要是由固态扩散驱动的,固态扩散取决于固态的晶体结构。因此,通过球磨降低结晶度,这有利于扩散,有助于促进再碳化。相反,提高结晶度的热退火会阻碍再碳化。已经确定了在重碳化阶段的初始快速阶段,沿着该阶段,碳酸化的速度也是晶体结构的函数,表明表面扩散的相关作用。这与最近提出的岛上CaO表面上CaCO3成核的机理相一致,该岛的临界尺寸由表面扩散确定。分析的另一个问题是预处理和循环对材料机械强度的影响,其脆性会影响CaL工艺的效率。分散在液体中并经受高能超声辐射的样品的粒度分布表明,研磨可提高脆性,而热退火可提高颗粒的抗碎裂性,即使预处理效果在循环后变得模糊不清。我们的研究表明,重碳酸化条件和晶体结构控制的扩散是评估新型CaL概念中二氧化碳捕集效率的重要参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号